

Trevor W. Exley

Via Morego, 30, 16163 Genova, Italy
trevor.exley@iit.it | exley.info

Personal Statement

Soft robotics researcher specializing in architected, monolithic systems where structure and function are co-designed. My current work investigates material architectures that integrate actuation and sensing within a single body, enabling pathways toward printable, assembly-free soft robotic systems.

Education

Ph.D., Biomedical Engineering , University of North Texas	2021–2024
Dissertation: “Thermo-Reversible Phase-Change Actuators for Physical Human–Robot Interactions. Supervisor: Amir Jafari.” GPA: 4.00/4.00.	
M.S., Biomedical Engineering , University of North Texas	2020–2021
Thesis: “Parkinson’s Disease and UPDRS-III Prediction Using Quiet Standing Data and Applied Machine Learning.”	
B.S., Biomedical Engineering , University of North Texas	2017–2020
Minors: Mathematics, Mechanical Engineering.	
Senior Capstone: “Hercules: Low Cost Trans-Humeral Prosthetic Capable of Power and Precision Grip Controlled Through Foot and Upper-Body Movement”	

Appointments

Postdoctoral Researcher , Soft Biorobotics Perception Research Line, Istituto Italiano di Tecnologia (IIT), Genova	2024–Present
PhD Researcher , Advanced Robotic Manipulators Lab, University of North Texas	2021–2024
Lab Affiliated , Biomedical AI Lab, University of North Texas	2020–2023

Peer-Reviewed Publications

(* = corresponding author; † = co-corresponding author)

Submitted / Under Revision

[J.13] D. Q. Nguyen, **T. Exley**, S. Ghosh, L. Beccai. *Jamming Assisted Lattice Continuum Arm (JALCA) for Lightweight High Payload Manipulators* Submitted to *IEEE Robotics and Automation Letters* submitted

[B.1] D. Cafiso, **T. Exley**, P. Trunin, A. B. Nardin, S. Hajaresab Ladakhana, L. Beccai. *Monolithic Strategies for Soft Robotics: Towards Fully Integrated 4D-Printed Systems*. In *Smart Materials in Additive Manufacturing, Volume 3: 4D-Printed Robotic Materials, Sensors, and Actuators*. (submitted)

[C.6] **T. Exley**, A. B. Nardin, P. Trunin, D. Cafiso, L. Beccai. Monolithic Units: Actuation, Sensing, and Simulation for Integrated Soft Robot Design. Submitted to *IEEE RoboSoft 2026*. (submitted)

[J.12] P. Trunin, D. Cafiso, A. B. Nardin, **T. Exley**[†], L. Beccai. MELEGROS: Monolithic Elephant-inspired Gripper with Optical Sensors. Submitted to *Advanced Science* (2025). (*accepted*)

[J.11] D. Johnson, **T. Exley**, M.-A. Torres, J. Slayton, M. Ecker, A. Jafari. Tailoring Silicone Mixtures for Soft Robotics: Predictive Modeling and Experimental Validation in Pneumatic Soft Actuators. Original Manuscript Ref: BMM-106977. (*under revision*)

In Press / Published

[J.10] **T. Exley**, D. Johnson, A. Jafari. Estimating Stiffness and Damping of a Novel Variable Impedance Actuator based on Adjusting Viscoelastic Properties of Thermoresponsive Polycaprolactone in Harmonic Motions. *Scientific Reports*. (2025)

[J.9] **T. Exley**, R. Wijesundara, S. Wang, A. Moridani, T. Nilforooshan, A. Jafari. TVIM: Thermoactive Variable Impedance Module Evaluating Shear-Mode Capabilities of Poly-caprolactone. *IEEE Access* (2025).

[C.5] J. Jenkins, O. Madera, C. Guerrero, K. Humes, A. Malmquist, C. Renfrew, Q. Bakker, K. Siu, **T. Exley**, A. Jafari. Design and Implementation of a High-Precision Motor Control System for Adjustable-Stiffness Biomedical Treadmills. In *Proc. IEEE 18th Dallas Circuits and Systems Conf. (DCAS)*, 1–6 (2025).

[C.4] F. Tajomi, **T. Exley**, A. Jafari. Development of a Miniature Thermal-Based Variable Impedance Actuator Using Thermoplastic Polymers for Scalable and Compact Robotic Applications. In *Proc. IEEE 18th Dallas Circuits and Systems Conf. (DCAS)*, 1–6 (2025).

[C.3] **T. Exley**, R. Wijesundara, N. Tan, A. Sunkara, X. He, S. Wang, B. Chan, A. Jain, L. Espinosa, A. Jafari. Agonist–Antagonist Pouch Motors: Bidirectional Soft Actuators Enhanced by Thermally Responsive Peltier Elements. In *IEEE/RSJ IROS* (2024).

[C.2] K. Ruiz, S. Ryan, S. Stutsman, T. Tirumala, J. Williams, R. Wijesundara, **T. Exley**, A. Jafari. Design considerations of Peltier-Integrated Therapeutic Wrist Wrap for Medical Applications. *2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)* (2024)

[J.8] **T. Exley**, D. Johnson, A. Jafari. Comparative Analysis of Peltier Devices and Flexible Heater Strips for Enhancing Bandwidth in Thermo-Active Soft Actuators. *Journal of Medical Robotics Research* 9(03n04):2450002 (2024).

[J.7] **T. Exley**, E. Hays, D. Johnson, A. Moridani, R. Motati, A. Jafari. Toward a Unified Naming Scheme for Thermo-Active Soft Actuators: A Review of Materials, Working Principles, and Applications. *Robotics Reports* 2(1):15–28 (2024).

[J.6] **T. Exley**, D. Johnson, A. Jafari. A Novel Variable Impedance Actuator Utilizing Adjustable Viscoelastic Properties of Thermoresponsive Polycaprolactone. *Robotics Reports* 1(1):57–66 (2023).

[J.5] **T. Exley**, D. Johnson, A. Jafari. Towards a Novel Thermal-Based Variable Impedance Module through Adjusting Viscoelastic Properties of a Thermoresponsive Polymer. *IEEE Transactions on Medical Robotics and Bionics*, 1–1 (2023).

[J.4] **T. Exley**, D. Johnson, A. Jafari. Utilizing the Peltier Effect for Actuation of Thermo-Active Soft Robots. *Smart Materials and Structures* (2023).

[J.3] E. Hays, J. Slayton, G. Tejeda-Godinez, E. Carney, K. Cruz, **T. Exley**, A. Jafari. A Review of Rehabilitative and Assistive Technologies for Upper-Body Exoskeletal Devices.

Actuators 12 (Soft Robotics in Biomedical Application):178 (2023).

- [C.1] Z. Liu, **T. Exley**, A. Meek, R. Yang, H. Zhao, M. V. Albert. Predicting GPU Performance and System Parameter Configuration Using Machine Learning. In *IEEE ISVLSI*, 253–258 (2022).
- [J.2] **T. Exley**, S. Moudy, R. M. Patterson, J. Kim, M. V. Albert. Predicting UPDRS Motor Symptoms in Individuals with Parkinson’s Disease from Force Plates Using Machine Learning. *IEEE Journal of Biomedical and Health Informatics* 26(7):3486–3494 (2022).
- [J.1] **T. Exley**, A. Jafari. Increasing Robustness and Output Performance of Variable Stiffness Actuators in Periodic Motions. *Mechanism and Machine Theory* 169:104645 (2022).
- [J.0] **T. Exley**, A. Jafari. Maximizing Energy Efficiency of Variable Stiffness Actuators through an Interval-Based Optimization Framework. *Sensors and Actuators A: Physical* 332:113123 (2021).

Grants & Funding

NIH G-RISE (T32GM136501) 2021-2024
Amount: \$109,318 USD.

Patents

- [P.4] R. Kaleigh, S. Ryan, S. Stutsman, T. Tirumala, J. Williams, R. Wijesundara, **T. Exley**, A. Jafari. **Peltier-integrated therapeutic wrap**. US Patent App. 18/649,757 (2024).
- [P.3] E. Hays, E. Carney, K. Cruz, J. Slayton, G. Tejeda-Godinez, **T. Exley**, A. Jafari. **Devices for biomechanical assistance including an exoskeleton and a robotic glove**. US Patent App. 18/649,708 (2024).
- [P.2] A. Jafari, **T. W. Exley**. **Thermal-based variable impedance actuator**. US Patent App. 18/418,008 (2024).
- [P.1] A. Jafari, **T. W. Exley**. **Thermoactivate modular soft actuator based on phase transition**. US Patent App. 18/417,801 (2024).

Workshops

- [W.1] **T. Exley**, M. Taghavi, F. Vanneste, L. Beccai (organizers). “Monolithic Soft Systems: Co-design components, tools, materials, and fabrication strategies for next-generation robotics.” *IEEE RAS RoboSoft 2026 Workshop* (full day), Kanazawa, Japan. (*submitted*).

Projects

Deliverables, presentations, multi-partner coordination

PROBOSCIS (PROBOSCIdean Sensitive Soft Robot for Versatile Gripping) 2024–2025
European Union Horizon Grant, Agreement No. 863212.

Teaching

Traditional Courses

[1] Teaching Fellow, UNT BMEN 2320 – <i>Biomedical Instrumentation</i>	Summer 2021
[2] Teaching Assistant, UNT BMEN 2210 – <i>Biomedical Data Acquisition</i> ; BMEN 2320 – <i>Biomedical Instrumentation</i>	2020–2021

External courses, tutorials, and workshops

[1] Soft Robotics in i4.0 Robotics in Industry 4.0: Challenges and Opportunities <i>University of Texas at San Antonio, Summer 2022</i>

Research Supervised

Direct, Individual

Anita Stephanie Akpu — Undergraduate → BME B.S. at University of North Texas	Sep 2023 – May 2024
Rachel Evers — Undergraduate → Biology B.S. at University of St. Thomas	Sep 2023 – May 2024
Kendra Green — Undergraduate → BME B.S. at University of North Texas	Sep 2023 – May 2024
Joanna Thirunilathu — Undergraduate → BME B.S. at University of North Texas	Sep 2023 – May 2024
Bonnie Chan — TAMS Student [C.3] → B.A. at Harvard University	Sep 2023 – May 2024
Luis Espinosa — TAMS Student [C.3] → Aerospace B.S. at Georgia Tech	Sep 2023 – May 2024
Xinyu (Hebe) He — TAMS Student [C.3] → CSCE B.S. at UT Austin	Sep 2023 – May 2024
Aditya Jain — TAMS Student [C.3] → Neuroscience/CSCE B.S. Pre-Med at UT Austin	Sep 2023 – May 2024
Akshay Sunkara — TAMS Student [C.3] → EECS B.S. at UC Berkeley	Sep 2023 – May 2024
Nathan Tan — TAMS Student [C.3] → MEEN at UT Austin	Sep 2023 – May 2024
Shuopu Wang — TAMS Student [C.3] → ECE B.S. at UT Austin	Sep 2023 – May 2024
Arian Moridani — Undergraduate [J.8] → CSCE M.S. at Georgia Tech	Mar 2023 – May 2024
Ramya Motati — TAMS Student [J.8] → Biochem B.S. at Rice University	Apr 2023 – Dec 2023
Kalyan Adhikari — TAMS Student → CSCE B.S. at Texas A&M	Jun 2022 – Feb 2023

Direct, Group

Omar Madera, Cristian Guerrero, James Jenkins [C.5] EE Senior Capstone	Aug 2023 – Aug 2024
--	---------------------

Jack Slayton, Emilly Hays, Emily Carney, Kobe Cruz, Gary Tejeda-Godinez [P.3] [J.4] Aug 2022 – May 2023
BME Senior Capstone

Sarah Stutsman, Tanya Tirumala, Samantha Ryan, Jatara Williams, Kayleigh Ruiz [P.4] [C.2] Aug 2022 – May 2023
BME Senior Capstone

Service

Editorial

Co-Guest Editor, *Actuators* Special Issue “Soft Robotics in Biomedical Application” 2024

Reviewer

Actuators
Applied Sciences
Biomimetics
IEEE Access
IEEE Intl. Conference on Rehabilitation Robotics (ICORR)
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS)
IEEE RoboSoft Conference
IEEE Robotics and Automation Letters (RA-L)
IEEE Transactions on Medical Robotics and Bionics (T-MRB)
IEEE Transactions on Robotics (T-RO)
Journal of NeuroEngineering and Rehabilitation (JNER)
Robotics Reports
Soft Robotics

Talks (selected)

- [2] Global Ethicon: “Thermo-Reversible Phase-Change Actuators for pHRI” Feb 15, 2023
- [1] UNT Health Science Center: “Introduction to Machine Learning” Jun 11, 2021

Awards

- [4] Outstanding Ph.D. Graduate, University of North Texas (2024)
- [3] Outstanding M.S. Student, University of North Texas (2021)
- [2] Outstanding Senior; Distinguished Honors College Scholar; UNT Excellence Scholarship (2020)
- [1] Esports Scholarship, UNT Varsity League of Legends Team (2019–2020)

Professional Memberships

Institute of Electrical and Electronics Engineers (IEEE)	2020–Present
Biomedical Engineering Society (BMES)	2020–2024
American Society of Biomechanics (ASB)	2020–2021